Main 岩澤理論とその展望(上・下) / Iwasawa theory and its perspective I, II

岩澤理論とその展望(上・下) / Iwasawa theory and its perspective I, II

5.0 / 5.0
0 comments
[内容紹介(上巻)] 整数論における金字塔としての岩澤理論。1950年代に岩澤健吉が手がけた研究に端を発する。その後、p進ガロワ表現やガロワ表現の変形空間の岩澤理論、さらには非可換岩澤理論へと大きく一般化された。本書は、この新しい岩澤理論を解説する待望の教科書である。上巻では、原点であるイデアル類群の円分岩澤理論を解説する。(全2冊) [内容(上巻)(「BOOK」データベースより)] 整数論における金字塔としての岩澤理論。1950年代に岩澤健吉が手がけた研究に端を発する。その後、p進ガロワ表現やガロワ表現の変形空間の岩澤理論、さらには非可換岩澤理論へと大きく一般化された。本書は、この新しい岩澤理論を解説する待望の教科書である。上巻では、原点であるイデアル群の円分岩澤理論を解説する。 [内容紹介(下巻)] 整数論における金字塔としての岩澤理論。フェルマーの最終定理の解決以後も目覚ましく進展している。下巻では、「p進表現の円分岩澤理論」「ガロワ変形の岩澤理論」を説明する。上巻とのつながりを考慮し、「楕円曲線の岩澤理論概説」を1章に置いた。いまだ和書のない「肥田理論」などの解説のほか貴重な知見も数多く提供する。(全2冊完結) [内容(下巻)(「BOOK」データベースより)] 整数論における金字塔としての岩澤理論。フェルマーの最終定理の解決に寄与した後も目覚ましく進展している。「イデアル類群の円分岩澤理論」を論じた上巻に対し、下巻では、「p進表現の円分岩澤理論」「ガロワ変形の岩澤理論」を扱う。上巻とのつながりを考慮し、「楕円曲線の岩澤理論の紹介」を加え、またいまだ和書のない「肥田理論」などの解説ほか、他書にない貴重な知識を提供する。 [著者略歴 (「BOOK著者紹介情報」より)] 落合/理 1972年生まれ。2001年東京大学大学院数理科学研究科博士課程修了。数理科学博士。現在、大阪大学大学院理学研究科准教授。専攻は整数論および数論幾何学(本データはこの書籍が刊行された当時に掲載されていたものです)
Request Code : ZLIBIO2400737
Categories:
Year:
2022
Publisher:
岩波書店
Language:
Japanese
Pages:
592
ISBN 10:
4000298224
ISBN 13:
9784000298223
ISBN:
4000298216,9784000298216,4000298224,9784
Series:
岩波数学叢書 / Iwanami Studies in Advanced Mathematics

Comments of this book

There are no comments yet.